If x2+y2+z2=1. What is the range of xy+yz+zx?
Option (c)
x2+y2+z2=1...............................(1)
We know that
x2+y2+z2+2(xy+yz+xz)=(x+y+z)2≥0
1+ 2(xy + yz +xz) ≥ 0
xy+yz+zx≥−12.............................(2)
Since AM≥GM
x2+y2≥2xy
x2+z2≥2xz
y2+z2≥2zy
x2+y2+z2≥(xy+yz+zx)
(xy+yz+zx)≤1