1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Trigonometric Ratios of Multiples of an Angle
If x2+y2+z2...
Question
If
x
2
+
y
2
+
z
2
=
r
2
and
tan
α
=
x
y
z
r
,
tan
β
=
y
z
x
r
,
tan
γ
=
Z
X
y
r
then
α
+
β
+
γ
=
A
π
/
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
π
/
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
π
/
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
C
π
/
2
Given
x
2
+
y
2
+
z
2
=
r
2
t
a
n
α
=
x
y
z
r
,
t
a
n
β
=
y
z
x
r
,
t
a
n
γ
=
z
x
y
r
∴
t
a
n
α
t
a
n
β
t
a
n
γ
=
x
y
z
r
3
∴
t
a
n
(
α
+
β
+
γ
)
=
t
a
n
α
+
t
a
n
β
+
t
a
n
γ
−
t
a
n
α
t
a
n
β
t
a
n
γ
1
−
t
a
n
α
t
a
n
β
−
t
a
n
β
t
a
n
γ
−
t
a
n
α
t
a
n
γ
=
x
y
z
r
+
y
z
x
r
+
z
x
y
r
−
x
y
z
r
3
1
−
y
2
r
2
−
z
2
r
2
−
x
2
r
2
=
(
x
y
z
r
+
y
z
x
r
+
x
z
y
r
−
x
y
z
r
3
)
1
−
(
1
)
∴
t
a
n
(
α
+
β
+
γ
)
=
∞
⇒
α
+
β
+
γ
=
π
2
Suggest Corrections
1
Similar questions
Q.
If
r
2
=
x
2
+
y
2
+
z
2
and
tan
−
1
y
z
x
r
+
tan
−
1
x
z
y
r
=
π
2
−
tan
−
1
ϕ
, then
Q.
If
tan
β
=
2
sin
α
sin
γ
sin
(
α
+
γ
)
, then
tan
α
,
tan
β
,
tan
γ
are in which series where
α
≠
0
a
n
d
γ
≠
0
a
n
d
β
≠
π
2
Q.
If
tan
β
=
2
sin
α
sin
γ
sin
(
α
+
γ
)
show that
tan
α
,
tan
β
,
tan
γ
are in H.P. where
α
≠
0
a
n
d
γ
≠
0
a
n
d
β
≠
π
2
Q.
If
r
2
=
x
2
+
y
2
+
z
2
, then prove that
tan
−
1
(
y
z
r
x
)
+
tan
−
1
(
z
x
r
y
)
+
tan
−
1
(
x
y
r
z
)
=
π
2
Q.
If
0
<
α
<
β
<
γ
<
π
/
2
, then show
tan
α
<
sin
α
+
sin
β
+
sin
γ
cos
α
+
cos
β
+
cos
γ
<
tan
γ
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Explore more
Trigonometric Ratios of Multiples of an Angle
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app