wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x2yx3dydx=y4cosxx3y3=

A
sinx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2sinx+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3sinx+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
3cosx+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 3sinx+c

x2yx3dydx=y4cosxdividingbyx3onbothsidesdydxyx=y4x3cosx1y4dydx1y3x=1x3cosxputting1y3=t3y4dydx=dtdx13dtdxtx=1x3cosxdtdx+3tx=3x3cosxitisafirstdegreelinearD.Eherep=3xQ=3x3cosxI.F=epdx=e3xdx=e3logx=x3solutionofD.Eist×I.F=Q.I.Fdx+Ct×x3=3x3cosx×x3dx+Cx3y3=3cosxdx+Cx3y3=3sinx+C


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction to Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon