If x2y−x3dydx=y4cosx⇒x3y−3=
x2y−x3dydx=y4cosxdividingby−x3onbothsidesdydx−yx=−y4x3cosx⇒1y4dydx−1y3x=−1x3cosxputting1y3=t−3y4dydx=dtdx⇒−13dtdx−tx=−−1x3cosx⇒dtdx+3tx=3x3cosxitisafirstdegreelinearD.Eherep=3xQ=3x3cosxI.F=e∫pdx=e∫3xdx=e3logx=x3solutionofD.Eist×I.F=∫Q.I.Fdx+Ct×x3=∫3x3cosx×x3dx+C⇒x3y3=∫3cosxdx+C⇒x3y−3=3sinx+C