The correct option is D (57,57),(3,−1)
∵x+2y−3=0 and 2x+y−3=0 are non-parallel.
Bisector of lines
(x+2y−3)√5=±(2x+y−3)√5
⇒(x+2y−3)=(2x+y−3)
⇒x−y=0 ............................(1)
and ⇒(x+2y−3)=−(2x+y−3)
⇒x+y=2 ............................(2)
∵ Centre of circle lies on angle bisector of lines.
Also centre lies on a line 3x+4y=5 ..................(3)
Solving (1) and (3) we get
(57,57)
Solving (2) and (3) we get
(3,−1)
Hence the two possible centres of the circle are (57,57), (3,−1).