If x–2y+4=0 and 2x+y–5=0 are the sides of a isosceles triangle having area 10 sq unit. Equation of third side is
Euqation of angle bisector of given lines: x−2y+4=±(2x+y−5)
⇒x−2y+4=(2x+y−5) and x−2y+4=−(2x+y−5)
⇒x−2y+4−2x−y+5=0 and x−2y+4+2x+y−5=0
∴x+3y=9 and 3x−y=1
Side BC will be parallel to these bisectors.
Let AD=a where D is foot of perpendicular.
⇒AB=a√2
Area of ΔABC is =12×2a×a=10
⇒a2=10
∴a=√10
Case (1): Let the equation of BC be x+3y=c
Since, the distance from A to line BC is √10.
⇒|65+3(135)−c|√12+32=√10
⇒|6+39−5c5|√1+9=√10
⇒45−5c5=±10
⇒45−5c=±50
⇒5c=45−50 or 5c=−45−50
⇒5c=−5 or 5c=−95
∴c=−1 or c=−19
Hence, the equation of BC is x+3y=−1 or x+3y=−19