If x=3−2√2 , then 1x=13−2√2
Rationalising 1x =13−2√2×3+2√23+2√2
⇒3+2√2(3)2−(2√2)2 = 3+2√29−8 = 3+2√2
∴1x=3+2√2
Now, x2+1x2 = (3−2√2)2+(3+2√2)2
Using (a+b)2=a2+2ab+b2,(a−b)2=a2−2ab+b2
=(32−2(3)(2√2)+(2√2)2)+(32+2(3)(2√2)+(2√2)2)
= (9−12√2+8)+(9+12√2+8)
= 17−12√2+17+12√2
= 34
Hence, the value of x2+1x2 = 34