If x=3+2√2,thenthevalueof(√x+1√x) is:
1
2
2√2
-1
(√x+1√x)2=x+1x+2=(3+2√2)+1(3+2√2)+2=(3+2√2)+1(3+2√2)×(3−2√2)(3−2√2)+2=(3+2√2)+(3−2√2)+2=8.∴(√x+1√x)=2√2
If y=tan−1(2x1+22x+1), then dydx at x=0 is
If x=√3+1√3−1andy=√3−1√3+1,thenthevalueof(x2+y2)is:
If x = 1, then the value of
2+x1+√3+x+2−x2−√2−x=?
The function f(x)=2x3–3x2–12x+8 has maximum at x =