Let the roots of x3+5x2+px+q=0⋯(i) be α,β,γ1
and roots of x3+7x2+px+r=0⋯(ii) be α,β,γ2.
Subtracting equation (ii) from (i),
−2x2+q−r=0⋯(iii)
∵α,β are common roots, so the roots of the equation (iii) are α,β.
⇒α+β=0
From equation (i),
α+β+γ1=−5⇒γ1=−5
From equation (ii),
α+β+γ2=−7⇒γ2=−7
∴γ1+γ2=−12
⇒|γ1+γ2|=12