The correct option is A 1
Let f(x)=ax2+bx+5
It is given that (x+3) and x+13 are factors of f(x).
By factor theorem, f(−3)=0 and f(−13)=0
∴f(–3)=a(–3)2+b(–3)+5=0
⇒9a−3b+5=0.........(i)
f(−13)=a(−13)2+b(−13)+5=0
⇒a9−b3+5=0
⇒a−3b+45=0...........(ii)
Subtracting (ii) from (i), we get:
8a – 40 = 0
⇒a=5 …..(iii)
Substituting a = 5 in (i), we get:
45 – 3b + 5 = 0
⇒3b=50
⇒b=503.........(iv)
Using (iii) and (iv), we get:
10a – 3b + 1
=10(5)−3(503)+1
= 50 -50 + 1
= 1
Hence, the correct answer is option (1).