Given: (9y2−4x2)(81y4+36x2y2+16x4)
Using Identity:
a3−b3=(a−b)(a2+ab+b2)
Comparing given equation with identity we get,
∴(9y2)3−(4x2)3
=(9y2−4x2)((9y2)2+9y2×4x2+(4x2)2)
729y6−64x6=(9y2−4x2)(81y4+36x2y2+16x4)
∴(9y2−4x2)(81y4+36x2y2+16x4)
=729y6−64x6
Substituting x=3 and y=−1 we get.
=729(−1)6−64(3)6
=729(1)−64(729)
=729(1−64)
=729x−63
=−45927
∴(9y2−4x2)(81y4+36x2y2+16x4)=−45927
When x=3 and y =−1