If x3−1x3=14, then x−1x=
(x+(1x))3=x3+3x2(1x2)−(1x3)=(x3−(1x3))−3(x−(1x))letx−(1x)=tthent3+3t−14=0or(t−2)(t2+2t+7)∴t=2
If x3−1x3=14, then x+1x=
If (x+1x)=4, find the value of
(1) (x3+1x3)
(2) (x−1x)
(3) (x3−1x3)