The correct option is A 3 & −8
Let,
P(x)=(x2−2x−3)(2x2+ax−2) =(x+1)(x−3)(2x2+ax−2)
As, HCF is (x−3)(x+2)
x+2=0⇒x=−2
x=−2 is the zero.
∴P(−2)=0
P(−2)=(−2+1)(−2−3)2×4+a(−2)−2
(−1)(−5)(8−2a−2)=0
5(6−2a)=0
a=3
Let,
Q(x)=(x2+x−2)(3x2+bx−3) =(x−1)(x+2)(3x2+bx−3)
As, HCF is (x−3)(x+2)
Similarly Q(3)=0
Q(3)=(3−1)(3+2)(3×9+3b−3)(2)(5)(27+3b−3)=010(24+3b)=0b=−8