wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x3+y33axy=0, then prove that d2ydx2=2a2xy(ax-y2)3.


Open in App
Solution

Step 1 : Differentiate with respect to x,

Given :x3+y33axy=0.

ddxx3+ddxy3-ddx3axy=ddx(0)

3x2+3y2dydx-3a1.y+xdydx=0

3x2+3y2dydx-3ay-3axdydx=0

x2+y2dydx-ay-axdydx=0

dydxax-y2=x2-ay

dydx=(x2-ay)(ax-y2)

Step 2: Find double differentiation of y with respect to x.

ddxdydx=ddx(x2-ay)(ax-y2)

d2ydx2=(ax-y2)ddx(x2-ay)-(x2-ay)ddx(ax-y2)(ax-y2)2

d2ydx2=(ax-y2)(2x-adydx)-(x2-ay)(a-2ydydx)(ax-y2)2

d2ydx2=(ax-y2)(2x-ax2-ayax-y2)-(x2-ay)(a-2yx2-ayax-y2)(ax-y2)2

d2ydx2=(ax-y2)2ax2-2xy2-ax2-a2yax-y2-(x2-ay)a2x-ay2-2x2y+2ax2ax-y2(ax-y2)2

d2ydx2=(ax-y2)ax2-a2y-2xy2-(x2-ay)ax2+ay2-2x2y(ax-y2)3

d2ydx2=2a2xy(ax-y2)3

Hence proved, d2ydx2=2a2xy(ax-y2)3


flag
Suggest Corrections
thumbs-up
20
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving Complex Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon