If x3+y3–3axy=0, then prove that d2ydx2=2a2xy(ax-y2)3.
Step 1 : Differentiate with respect to x,
Given :x3+y3–3axy=0.
⇒ ddxx3+ddxy3-ddx3axy=ddx(0)
⇒3x2+3y2dydx-3a1.y+xdydx=0
⇒ 3x2+3y2dydx-3ay-3axdydx=0
⇒ x2+y2dydx-ay-axdydx=0
⇒ dydxax-y2=x2-ay
⇒ dydx=(x2-ay)(ax-y2)
Step 2: Find double differentiation of y with respect to x.
ddxdydx=ddx(x2-ay)(ax-y2)
⇒ d2ydx2=(ax-y2)ddx(x2-ay)-(x2-ay)ddx(ax-y2)(ax-y2)2
⇒ d2ydx2=(ax-y2)(2x-adydx)-(x2-ay)(a-2ydydx)(ax-y2)2
⇒ d2ydx2=(ax-y2)(2x-ax2-ayax-y2)-(x2-ay)(a-2yx2-ayax-y2)(ax-y2)2
⇒ d2ydx2=(ax-y2)2ax2-2xy2-ax2-a2yax-y2-(x2-ay)a2x-ay2-2x2y+2ax2ax-y2(ax-y2)2
⇒ d2ydx2=(ax-y2)ax2-a2y-2xy2-(x2-ay)ax2+ay2-2x2y(ax-y2)3
⇒ d2ydx2=2a2xy(ax-y2)3
Hence proved, d2ydx2=2a2xy(ax-y2)3