wehavex3+y3−3axy=03x2+3y2dydx−3a(xdydx+y)=03x2+3y2dydx−3axdydx−3ay=03x2−3ay+(3y2−3ax)dydx=0dydx=ay−x2y2−axdydx=x2−ayax−y2Again,d2ydx2=ax−y2(2x−adydx)−(x2−ay)(a−2ydydx)(ax−y2)2d2ydx2=ax−y2(2x−a(x2−ayax−y2))−(x2−ay)(a−2y(x2−ayax−y2))(ax−y2)2d2ydx2=ax−y2[2ax2−2xy2−ax2−a2yax−y2]−(x2−ay)[a2x−ay2−2x2y+2ax2ax−y2](ax−y2)2d2ydx2=ax−y2(ax2−a2y−2xy2)−(x2−ay)(ax2+ay2−2x2y)(ax−y2)3d2ydx2=2a2xy(ax−y2)3proved.