wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x3+y33axy=0 then prove that d2ydx2=2a2xy(axy2)3

Open in App
Solution

wehavex3+y33axy=03x2+3y2dydx3a(xdydx+y)=03x2+3y2dydx3axdydx3ay=03x23ay+(3y23ax)dydx=0dydx=ayx2y2axdydx=x2ayaxy2Again,d2ydx2=axy2(2xadydx)(x2ay)(a2ydydx)(axy2)2d2ydx2=axy2(2xa(x2ayaxy2))(x2ay)(a2y(x2ayaxy2))(axy2)2d2ydx2=axy2[2ax22xy2ax2a2yaxy2](x2ay)[a2xay22x2y+2ax2axy2](axy2)2d2ydx2=axy2(ax2a2y2xy2)(x2ay)(ax2+ay22x2y)(axy2)3d2ydx2=2a2xy(axy2)3proved.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Formation of Differential Equation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon