If x3+y3+z3=3xyz then the relation between x,y and z is :
We have x3+y3+z3−3xyz
=(x+y+z)(x2+y2+z2−xy−yz−zx)
0=(x+y+z)(x2+y2+z2−xy−yz−zx)
So either x+y+z=0 (or)
x2+y2+z2−xy−yz−zx=0
x2+y2+z2−xy−yz−zx=0
2x2+2y2+2z2−2xy−2yz−2zx=0
(x2−2xy+y2)+(y2−2yz+z2)+(z2−2zx+x2)=0
(x−y)2+(y−z)2+(z−x)2=0
⇒x=y=z
Therefore, either x+y+z=0 or x=y=z.