If x3+y3+z3=6xyz, where x, y, z are non-zero integers, x+y+z≠0 and xyz=x+y+z, then the value of (x–y)2+(y–z)2+(z–x)2 is equal to
A
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
6
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C 6 Given that x3+y3+z3=6xyz and x+y+z=xyz such that x+y+z≠0.
Now, (x–x+y–y+z–z)=0 ⇒((x–y)+(y–z)+(z–x))=0
Squaring both sides, we get: [(x–y)+(y–z)+(z–x)]2=0 ⇒(x−y)2+(y−z)2+(z−x)2+2(x−y)(y−z)+2(y−z)(z−x)+2(z−x)(x−y)=0
[∴(x+y+z)2=x2+y2+z2+2(xy+yz+zx)] ⇒(x−y)2+(y−z)2+(z−x)2=−2[(x−y)(y−z)+(y−z)(z−x)+(z−x)(x−y)] ⇒(x−y)2+(y−z)2+(z−x)2=−2[xy−y2−zx+yz+yz−z2−xy+zx+zx−x2−yz+xy] ⇒(x−y)2+(y−z)2+(z−x)2=−2[−x2−y2−z2+xy+yz+zx] ⇒(x−y)2+(y−z)2+(z−x)2=−2[x2+y2+z2−xy−yz−zx] .......(i)
Consider the identity of (x3+y3+z3–3xyz). ∴x3+y3+z3–3xyz=(x+y+z)(x2+y2+z2−xy−yz−zx) ⇒6xyz−3xyz=xyz(x2+y2+z2−xy−yz−zx) [∴x3+y3+z3=6xyz and x+y+z=xyz] ⇒3xyz=xyz(x2+y2+z2−xy−yz−zx) ⇒x2+y2+z2−xy−yz−zx=3
From (i) and (ii), we get: (x–y)2+(y–z)2+(z–x)2=2×3=6
Hence, the correct answer is option (3).