The correct option is B −32
Given : x3x−2xxcoty−1=0 ⋯(1)
Put x=1 in the equation (1)
1−2coty−1=0
⇒coty=0⇒y=π2
We know that
ddx(xx)=xx(1+lnx) ⋯(2)
Similarly,
ddx(x3x)=ddx(xx)3
=3(x2x)ddx(xx)
=3(x2x)xx(1+lnx) [From (2)]
∴ddx(x3x)=3x3x(1+lnx) ⋯(3)
Now, differentiating the equation (1) w.r.t. x
3x3x(1+lnx)−2[xx(1+lnx)⋅coty−xx⋅cosec2y⋅y′]=0
Put x=1 and y=π2 in the above equation
3⋅1⋅(1+ln1)−2[1⋅(1+ln1)⋅cotπ2−1⋅cosec2π2⋅y′]=0
⇒3−2[0−y′]=0
⇒y′(1)=−32