If x4+1x4=119,find the value of x3−1x3.
x4+1x4=119
Adding 2 to both sides,
x4+1x4+2=119+2⇒ (x2)2+(1x2)2+2=121(x2+1x2)2=(11)2⇒ x2+1x2=11x2+1x2=11Subtracting 2 from both sides,x2+1x2−2=11−2=9⇒ (x−1x)2=(3)2⇒ x−1x=3⇒ x−1x=3Cubing both sides(x−1x)3=(3)3x3−1x3−3(x−1x)=27⇒ x3−1x3−3×3=27⇒ x3−1x3−9=27∴ x3−1x3=27+9=36