The given quadratic equation is :
x2+2x+4p=0
Since -4 is a root of the above equation, then it must satisfy it.
Now, (-4)^2 + 2(-4) + 4p = 0
⇒16–8+4p=0
⇒4p=−8
⇒p=−2
Now, the other quadratic equation is :
x2+px(1+3k)+7(3+2k)=0
x2−x(2+6k)+(21+14k)=0
Now, a = 1, b = - 2 (2 + 6k); c = 21 + 14k
Now,D=b2−4ac=4+36k2+24k−84−56k=36k2−32k−80
For equal roots :
D=0⇒36k2−32k−80=0⇒4[9k2−8k−20]=0⇒9k2−8k−20=0⇒9k2−18k+10k−20=0⇒9k(k−2)+10(k−2)=0⇒(9k+10)(k−2)=0⇒9k+10=0ork−2=0⇒k=−109 or k=2