The correct option is D 4n!(43(n−r))!(43(2n+r))!
The (k+1)th term of the given expression is
Tk+1=4nCkx(4n−k)(1x2)k
We know the coefficient of x is 4r, so, 4n−k−2k=4r
k=4(n−r)3
The (k+1)th term will be,
4nC4(n−r)3(x)(4n−4(n−r)3)(1x2)4(n−r)3
The coeffecient will be 4nC4(n−r)3
That is,
= 4n!(4n−4n3+4r3)!(4(n−r)3)!
= 4n!(4(2n+r)3)!(4(n−r)3)!