If x=6−√35, then x2+1x2= ___
144
142
140
120
x=6−√35
1x=16−√35×6+√356+√35
=6+√35(6)2−(√35)2
=6+√3536−35
=6+√35
Therefore, x+1x=6−√35+6+√35
=12
We know, (x+1x)2=x2+2+1x2
(12)2=x2+1x2+2
∴x2+1x2=144−2
=142
If x+x−1=11, evaluate x2+x−2.