If x=7+4√3 and xy = 1, then 1x2+1y2=
194
x=7+4√3 and xy=1
∴ y=1x=17+4√3
∴ y=1x=1(7−4√3)(7+4√3)(7−4√3)
(Rationalising the denominator)
=7−4√3(7)2−(4√3)2=7−4√349−48=7−4√31
=7−4√3
∵ y=1x⇒1y=x
∴ 1x2+1y2=1x2+x2
=x2+1x2=(x+1x)2−2
=[(7+4√3)+7−4√3]2−2
=(14)2−2=196−2=194