If x=(7+4√3) then (x+1x)=?
(a) 8√3
(b) 14
(c) 49
(d) 48
x=(7+4√3)1x=1(7+4√3)=1(7−4√3)(7+4√3)(7−4√3)=7−4√372−(4√3)2=7−4√349−48=7−4√3 x+1x=7+4√3+7−4√3=14
Hence, the correct answer is option (b).
If x2 + 2(a - 1)x + a + 5 =0 has real roots belonging to the interval (1, 3) then aϵ
If x−1x=√3, then find the value of x3−1x3.