x=91/3⋅91/9⋅91/27⋯∞
⇒x=91/31−1/3=91/2=3
y=41/3⋅4−1/9⋅41/27⋯∞
⇒y=41/31+1/3=41/4=√2
Also z=11+i+1(1+i)2+1(1+i)3+⋯
=1/(1+i)1−1/(1+i)=1i=−i
∴p=x+yz=3+√2(−i)
Let Argument=θ
Since p is lying in 4th Quadrant,
we can say tanα=|√2||3|
⇒α=tan−1(√23)
⇒Argument=−α=−tan−1√23
Comparing we have, a=2;b=3
⇒a2+b2=13