If x=9−4√5, find the value of x2+1x2
Given: x=9−4√5……(i)
Taking reciprocal, we have
⇒1x=19−4√5
⇒1x=[1×(9+4√5)][(9−4√5)×(9+4√5)] [On rationalising]
⇒1x=9+4√5(81−80) [∵(a+b)(a−b)=a2−b2]
⇒1x=9+4√5……(ii)
We have to find the value of
x2+1x2
=(9−4√5)2+(9+4√5)2 [Using equation (i) and (ii)]
=[92+(4√5)2−2×9×4√5]+[92+(4√5)2+2×9×4√5) [∵(a±b)2=a2+b2−±2ab ]
=[81+80−72√5]+[81+80+72√5]
=161−72√5+161+72√5=322