If x=a(1+cosθ),y=a(θ+sinθ) , then d2ydx2atθ=π/2 is equal to:
-1a
1a
-1
-2
Explanation for the correct option.
Step 1: Differentiate xandy w.r.t θ
x=a(1+cosθ)=a+acosθ⇒dxdθ=0-asinθ=-asinθ
y=a(θ+sinθ)=aθ+asinθ⇒dydθ=a1+acosθ=a1+cosθ
Step 2: Find first derivative.
⇒dydx=dydθ×dθdx=1+cosθ-sinθ
Step 3: Find second derivative.
d2ydx2=ddθdydx×dθdx=ddθ-1+cosθsinθ×1-asinθ=-0-sinθsinθ-1+cosθcosθsin2θ×1-asinθbyquotientrule=--sin2θ-cosθ-cos2θsin2θ×1-asinθ=sin2θ+cos2θ+cosθsin2θ×1-asinθ=1+cosθsin2θ×1-asinθ=-1+cosθasin3θ
Step 4: Find d2ydx2atθ=π/2
d2ydx2θ=π2=-1+cosπ2asin3π2=-1+0a×1=-1a
Hence, option A is correct.
If xsinθ=ysin(θ+2π/3)=zsin(θ+4π/3) then xy+yz+zx is equal to: