wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=a(1+cosθ),y=a(θ+sinθ) , then d2ydx2atθ=π/2 is equal to:


A

-1a

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B

1a

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

-1

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

-2

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A

-1a


Explanation for the correct option.

Step 1: Differentiate xandy w.r.t θ

x=a(1+cosθ)=a+acosθdxdθ=0-asinθ=-asinθ

y=a(θ+sinθ)=aθ+asinθdydθ=a1+acosθ=a1+cosθ

Step 2: Find first derivative.

dydx=dydθ×dθdx=1+cosθ-sinθ

Step 3: Find second derivative.

d2ydx2=ddθdydx×dθdx=ddθ-1+cosθsinθ×1-asinθ=-0-sinθsinθ-1+cosθcosθsin2θ×1-asinθbyquotientrule=--sin2θ-cosθ-cos2θsin2θ×1-asinθ=sin2θ+cos2θ+cosθsin2θ×1-asinθ=1+cosθsin2θ×1-asinθ=-1+cosθasin3θ

Step 4: Find d2ydx2atθ=π/2

d2ydx2θ=π2=-1+cosπ2asin3π2=-1+0a×1=-1a

Hence, option A is correct.


flag
Suggest Corrections
thumbs-up
10
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon