wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x = a (1 − cos3 θ), y = a sin3 θ, prove that d2ydx2=3227aat θ=π6.

Open in App
Solution

Here,

x=a1-cos3θ, y =a sin3θDifferentiating w.r.t. θ, we getdxdθ=3a cos2θ sinθ anddydθ=3a sin2θ cosθ dydx=3a sin2θ cosθ3a cos2θ sinθ=tanθDifferentiating w.r.t. x, we getd2ydx2=sec2θ dθdx =sec2θ3a cos2θ sinθ =sec4θ3a sinθ d2ydx2 at θ=π6d2ydx2= secπ6 43a sinπ6=3227a

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Conditional Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon