wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If (xa)2+(yb)2=c2, then prove that [1+(dydx)2]3/2d2ydx2 is a independent of C.

Open in App
Solution

Given,
(xa)2+(yb)2=c2....(i)

Diff. w. r. t x

2(xa)+2(yb)dydx=0

dydx=(ax)yb....(ii)
Again Diff. w. r. x
d2ydx2=(01)(yb)(dydx0)(ax)(yb)2 ⎢ ⎢ ⎢ddxvu=udvdxvdudxu2⎥ ⎥ ⎥

=(y+b)(ax)dydx(yb)2

=(yb)(xa)((xa)yb)(yb)2 [From (1)]

d2ydx2=(yb)2+(xa)2(yb)3

[1+(dydx)2]32d2ydx2

=1+((xa)yb)232(yb)2+(xa)2(yb)3

=[(yb)2+(xa)2(yb)2]32(yb)2+(xa)2(yb)2×1(yb)

=[(yb)2+(xa)2(yb)2]221(yb)

=[(yb)2+(xa)2(yb)2]×yb1

=[(yb)2+(xa)2(yb)]

=(yb)+(xa)2yb

Hence, it is independent of C

Hence proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Formation of Differential Equation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon