If x=a+b,y=aβ+bγ,z=aγ+bβ, where γ and β are cube roots of unity, then xyz=a3+b3. If this is true enter 1, else enter 0.
Open in App
Solution
Let γ=w and β=w2 where w3=1 And 1+w+w2=0 ...(i) Now yz (aγ+bβ)(aβ+bγ) =(aw+bw2)(aw2+bw) =w2(a+bw)(aw+b) =w2(a2w+ab+abw2+b2w) =w2((a2+b2)w+ab(1+w2)) =w2((a2+b2)w−ab(w)) =w3(a2−ab+b2 =(a2−ab+b2) =a3+b3a+b Hence xyz=a3+b3.