wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ), prove that d2xdθ2=acos θ-θ sin θ,d2ydθ2=asin θ+θ cos θ and d2ydx2=sec3θa θ.

Open in App
Solution

We have, x=acosθ+θsinθ
dxdθ=dacosθ+θsinθdθdxdθ=-asinθ+asinθ+aθcosθ=aθcosθ .....id2xdθ2=ddθdxdθ=daθcosθdθd2xdθ2=acosθ-aθsinθ=acosθ-θsinθ

y=asinθ-θcosθdydθ=dasinθ-θcosθdθdydθ=acosθ-acosθ+aθsinθ=aθsinθ .....iid2ydθ2=ddθdydθ=daθsinθdθd2ydθ2=asinθ+aθcosθ=asinθ+θcosθ
From (i) and (ii), we have
dydx=dydθdxdθ=aθsinθaθcosθ=tanθd2ydx2=ddxdydx=dtanθdx=sec2θdθdxd2ydx2=sec2θ1aθcosθd2ydx2=sec3θaθ
Hence proved.

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Conditional Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon