If x=a(cos t+t sin t) and y=a(sin t−t cos t),find d2ydx2. Mention the domain in which it is valid.
Given, x = a(cos t+t sin t) and y = a(sin t-t cos t)
Differtiating w.r.t. t, we get
dxdt=a[ddtcos t+(tddt(sin t)+sin t ddt(t))]∴ dxdt=a{−sin t+(t cos t+sin t.1)}=at cos tand dydt=a[ddt sin t+(t ddt cost t+cos t.1)]⇒ dydt=a{cos t−(t(−sin t)+cos t.1)}=at sin t⇒ dydx=dydtdxdt=at sin tat cos t=tan t i.e., dydx=tan t ..(i)Differentiating again w.r.t. x,we getd2ydx2=ddx(tan t)=ddt(tan t)dtdx=sec2tat cos t {∵ dxdt=at cos t}=1atsec3t
The result is valid for all real t except 0 and odd multiples of π2.