wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=a(cost+tsint)andy=a(sinttcost), then find the value of d2ydx2 at t = π4 is (d2ydx2)t=π4=kaπ. Find k

Open in App
Solution

x=a(cost+tsint) and y=a(sinttcost)
dxdt=a(sint+tcost+sint)
dxdt=atcost
y=a(sinttcost)
dydt=a(cost+tsintcost)
dydt=atsintd2ydt2=a(tcost+sint)
dydx=tant
Now, d2ydx2=ddt(dydx)×dtdx
d2ydx2=ddt(tant)×1atcost
d2ydx2=sec3tat
(d2ydx2)t=π4=2aπ

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon