The correct option is B −12a2
Clearly x2+y2=a2 and y(π/4)=a/√2, x(π/4)=a/√2.
Differentiating we get
2x+2yy1=0⇒y1=−xy, so y1(π/4)=−1
Now x+yy1=0⇒1+y21+yy2=0
⇒ y2=(π4)=−1+(y1(π4))2y(π4)=−2√2a
Differentiating again, we have
2y1y2+y1y2+yy3=0⇒y3=−3y1y2y
⇒ y3(π4)=−3(−1)(−2)√2a.a√2=−12a2