wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=a(cosθ+logtanθ2 and y=asinθ, then find the values of d2ydx2atθ=π4

Open in App
Solution

x=a(cosθ+logtanθ2)

dxdθ=a⎜ ⎜ ⎜sinθ+1tanθ2sec2θ2×12⎟ ⎟ ⎟

=a⎜ ⎜ ⎜sinθ+12sinθ2cosθ2⎟ ⎟ ⎟

=a(sinθ+1sinθ)

d2xdθ2=a(cosθ+1(cosθ)sin2θ)

=a(cosθ(1+1sin2θ))

y=asinθ ; dydθ=acosθ ;
d2ydθ2=asinθ

d2ydx2=d2ydθ2×dθ2dx2=asinθacosθ(1+1sin2θ)

=tanθsin2θ1+sin2θ
d2ydx2|θ=π4=sin2π41+sin2π4

=121+12

=13 .

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Logarithmic Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon