If x=acosθ+logtanθ2 and y=asinθ, then dydx is equal to:
cotθ
tanθ
sinθ
cosθ
Explanation for the correct option.
Step 1: Differentiate x w.r.t θ.
x=acosθ+logtanθ2⇒dxdθ=a-sinθ+1tanθ2×sec2θ2×12=a-sinθ+1cos2θ2sinθ2cosθ2×12=a-sinθ+12sinθ2cosθ2=a-sinθ+1sinθ
Step 2: Differentiate y w.r.t θ.
y=asinθ⇒dydθ=acosθ
Step 3: Find dydx .
dydx=dydθ×dθdx=acosθa-sinθ+1sinθ=cosθ1-sin2θsinθ=cosθ1-sin2θsinθ=cosθcos2θsinθ=tanθ
Hence, option B is correct.