x=a[cosθ+log tanθ2]
dxdθ=a[−sinθ+1tanθ2sec2θ212]
=−asinθ+a2sinθ2cosθ2
=asinθ−asinθ=a(1−sin2θ)sinθ
=acos2θsinθ
d2xdθ2=a[sinθ(2cosθ(−sinθ))−cos2θ(cosθ)sin2θ]
=a[−2sin2θcosθ−cos3θsin2θ]
=a[−2cosθ(1−cos2θ)−cos3θsin2θ]
=a[−2cosθ+2cos3θ−cos3θsin2θ]
=a[cos3θ−2cosθsin2θ]
y=asinθ
dydθ=acosθ
d2ydθ2=−asinθ
d2ydθ2=−asinθa[cos3θ−2cosθsin2θ]
=−sin3θcos3θ−2cosθ
d2ydx2|θ=π4=−sin3π4cos3π4−2cosπ4
=−(1√2)3(1√2)3−2(1√2)=−12√212√2−√2
=−12√21−22√2=−1−1=1.