wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x = a (cos θ+log tan θ2) and y=a sin θ, then find the value of d2ydx2 at θ=π4.

Open in App
Solution

x=a[cosθ+log tanθ2]
dxdθ=a[sinθ+1tanθ2sec2θ212]
=asinθ+a2sinθ2cosθ2
=asinθasinθ=a(1sin2θ)sinθ
=acos2θsinθ
d2xdθ2=a[sinθ(2cosθ(sinθ))cos2θ(cosθ)sin2θ]
=a[2sin2θcosθcos3θsin2θ]
=a[2cosθ(1cos2θ)cos3θsin2θ]
=a[2cosθ+2cos3θcos3θsin2θ]
=a[cos3θ2cosθsin2θ]
y=asinθ
dydθ=acosθ
d2ydθ2=asinθ
d2ydθ2=asinθa[cos3θ2cosθsin2θ]
=sin3θcos3θ2cosθ
d2ydx2|θ=π4=sin3π4cos3π42cosπ4
=(12)3(12)32(12)=1221222
=1221222=11=1.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Functions
QUANTITATIVE APTITUDE
Watch in App
Join BYJU'S Learning Program
CrossIcon