wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=a(cosθ+logtanθ2) and y=sinθ then find the value of d2ydx2 at θ=π4

Open in App
Solution

Given, x=a(cosθ+logtanθ2)

d2xdθ2=a(cosθcotθcscθ)

y=sinθ

d2ydθ2=sinθ

d2ydx2=sinθa(cosθcotθcosec θ)

=sinθa(cosθ+cotθcosec θ)

=sin(π4)a(cos(π4)+cot(π4)csc(π4))

=22(22+2)a

=13a

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Method of Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon