α=asec2θ, y=atan3θ, d3ydx3=?
d3ydx3=d3θdθ3d3θdx3
dydθ=ddθ(atan3θ)=a.3tan2θsec2θ
d2ydθ2=a3(sec2θ.tanθ.sec2θ+tan2θ.2secθ(secθtanθ))
=3a(2tanθsec4θ+2tan3θsec2θ)
dydθ2=60[(tanθ.4sec3θsecθ+sec4θ.sec2θ)+(tan3θ.2secθsecθtanθ+sec2θ.3tan2θsec2θ)]
=60[5sec4θ+sec6θ+2tan4θsec2θ+3tan2θsec2θ]
=60[7sec4θtan2θ+2tan4θsec2θ+sec6θ]
dxdθ⇒ ddθ(asec2θ)=a.2secθsecθtanθ
=2a(sec2θtanθ)
d2xdθ=2a(tanθ.2secθtanθ+sec2θ−sec2θ)
=2a((2tan2θsec2θ)+sec4θ)
d3xdθ3=2a[(2tan2θ32secθsecθtanθ+2sec2θ+2sec2θ2tanθsec2θ)+4sec3θsecθtanθ]
=2a[4tan3θsec2θ+4secθsec4θ+4tanθsec3θ]
=2a.4[tan3θsec2θ+2tanθsec4θ]
d3ydx3 ⇒ 6a(7sec4θtan2θ+2tan4θsec2θ+sec6θ)8a(tanθsec2θ[tan2θ+2sec2θ])
⇒ 34sec2θ[7sec2θtan2θ+2tan4θ+sec4θ]tanθsec4θ(tan2θ+2sec2θ)
⇒ (Since 1+tan2θ=sin2θ)
⇒ 34[7(1+tan2θ)(tan2θ)+2tan2θ+(1+tan2θ)tanθ(tanθ+2(1+tanθ))]
on further simplyfying we get
⇒ 3sec2θtanθ