If x=asecθ+btanθ and y=atanθ+bsecθ, prove that
(x2−y2)=(a2−b2).
x2−y2
=(asecθ+btanθ)2−(atanθ+bsecθ)2
=(a2sec2θ+b2tan2θ+2absecθtanθ)−(a2tan2θ+b2sec2θ+2abtanθsecθ)
=a2(sec2θ−tan2θ)+b2(tan2θ−sec2θ)
=a2−b2
If x = asecθ + btanθ and y = atanθ + bsecθ, then, x2 – y2 = a2 – b2