1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Basic Trigonometric Identities
If x = aθ +...
Question
If
x
=
a
sec
θ
+
b
tan
θ
and
y
=
a
tan
θ
+
b
sec
θ
, prove that
x
2
−
y
2
=
a
2
−
b
2
Open in App
Solution
Given,
x
=
a
sec
θ
+
b
tan
θ
by squaring both side
x
2
=
(
a
sec
θ
+
b
tan
θ
)
2
x
2
=
a
2
sec
2
θ
+
b
2
tan
2
θ
+
2
a
b
sec
θ
tan
θ
................1
And,
y
=
a
tan
θ
+
b
sec
θ
by squaring both side
y
2
=
(
a
tan
θ
+
b
sec
θ
)
2
y
2
=
a
2
tan
2
θ
+
b
2
sec
2
θ
+
2
a
b
sec
θ
tan
θ
......................2
subtract eq.2 from 1
x
2
−
y
2
=
a
2
sec
2
θ
−
a
2
tan
2
θ
+
b
2
tan
2
θ
−
b
2
sec
2
θ
+
2
a
b
sec
θ
tan
θ
−
2
a
b
tan
θ
sec
θ
x
2
−
y
2
=
a
2
(
sec
2
θ
−
tan
2
θ
)
+
b
2
(
tan
2
θ
−
sec
2
θ
)
x
2
−
y
2
=
a
2
(
1
)
+
b
2
(
−
1
)
x
2
−
y
2
=
a
2
−
b
2
Suggest Corrections
2
Similar questions
Q.
Prove that
x
2
−
y
2
=
a
2
−
b
2
, if
x
=
a
sec
θ
+
b
tan
θ
and
y
=
a
tan
θ
+
b
sec
θ
.
Q.
If
x
=
a
sec
θ
+
b
tan
θ
and
y
=
a
tan
θ
+
b
sec
θ
, then
x
2
−
y
2
a
2
−
b
2
=
___
Q.
Prove the following trigonometric identities.
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x
2
− y
2
= a
2
− b
2