We have,
x=asecθcosϕ
xa=secθcosϕ
On squaring both sides, we get
x2a2=sec2θcos2ϕ ……. (1)
Now, y=bsecθsinϕ
yb=secθsinϕ
On squaring both sides, we get
y2b2=sec2θsin2ϕ ……. (2)
Now, z=ctanθ
zc=tanθ
On squaring both sides, we get
z2c2=tan2θ ……. (3)
On adding equation (1) and (2), we have,
x2a2+y2b2=sec2θcos2ϕ+sec2θsin2ϕ
x2a2+y2b2=sec2θ(cos2ϕ+sin2ϕ)
We know that
cos2ϕ+sin2ϕ=1
Thus,
x2a2+y2b2=sec2θ
x2a2+y2b2=tan2θ+1 ……. (4)
From equation (3) and (4), we get
x2a2+y2b2=1+z2c2
Hence, proved.