wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

If x=asin2t(1+cos2t) and y=bcos2t(1cos2t), find dydx at t=π4.

Open in App
Solution

Given: x=asin2t(1+cos2t)

y=bcos2t(1cos2t)

Now, dxdt=asin2t(2sin2t)+2acos2t(1+cos2t)

dxdt=2a[cos2t+(cos22tsin22t)]=2a(cos2t+cos4t)

[cos2Asin2A=cos2A]

Now, dydt=bcos2t(2sin2t)+b(1cos2t)(2sin2t)

dydy=2b[sin2t+2sin2tcos2t]=2b(sin2t+sin4t)

[2sinAcosA=sin2A]

Now, dydx=dy/dtdx/dt=2b[sin2t+sin4t]2a[cos2t+cos4t]

At t=π4,dydx=ba⎢ ⎢sinx2+sinπcosx2+cosπ⎥ ⎥=ba[1+001]=ba

dydx=ba(att=π4)

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Standard Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon