wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=asin2t(1+cos2t) and y=bcos2t(1cos2t), find the values of dydx at t=π4 and t=π3
OR
If y=xx, prove that d2ydx21y(dydx)2yx=0

Open in App
Solution

x=asin2t(1+cos2t),y=bcos2t(1cos2t)
dydx=dydt×dtdx
=b[2sin2t(1cos2t)+2cos2tsin2t]×[12asin22t+2acos2t(1+cos2t)]
Substituting t=π4, we get
dydx=b[2]a[2]=ba
At t=π3, we get
dydx=b[33232]a[3212] =b32a

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Formation of Differential Equation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon