wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=asin2t(1+cos2t) and y=bcos2t(1cos2t), show that at t=π4,(dydx)=ba.

Open in App
Solution

We have, x=asin2t(1+cos2t)
Therefore, dxdt=a.[2cos2t(1+cos2t)+sin2t(2sin2t)]
=2a[cos2t+cos22tsin22t]
=2a[cos2t+cos4t]
and y=bcos2t(1cos2t)
then dydt=b[2sin2t(1cos2t)+cos2t.2sin2t]
=2b[sin2t+2sin2tcos2t]
=2b[sin2t+sin4t]
Therefore, dydx=dydtdxdt
=2b(sin2t+sin4t)2a(cos2t+cos4t)
Therefore, [dydx] at t=π4=ba⎢ ⎢sinπsinπ2cosπ+cosπ2⎥ ⎥
=ba×11

=ba

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometrical Interpretation of a Derivative
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon