If x=a sec A cos B, y=b sec A sin B and z=c tan A, then x2a2+y2b2−z2c2=
1
x=a sec A cos B⇒xa=sec A cos B
y=b sec A sin B⇒yb=sec A sin B
z=c tan A⇒zc=tan A
Squaring each of the equations we get,
x2a2=sec2 A cos2 B, y2b2=sec2 A sin2 B,z2c2=tan2 A
∴x2a2+y2b2−z2c2=sec2 A cos2 B+sec2 A sin2 B−tan2 A
=sec2 A(cos2 B+sin2 B)−tan2 A
=sec2 A−tan2 A……(cos2 B+sin2 B=1)
=1……(sec2 A−tan2 A=1)