wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=acost+log tant2 and y=asint, evaluate d2ydx2 at t=π3.

Open in App
Solution

We have,x=acost+log tant2 and y=a sintOn differentiating with respect to t, we getdxdt=ddtacost+log tant2=a-sint+1tant2×sec2t2×12 =a-sint+12sint2cost2=a-sint+1sint =a-sin2t+1sint=acos2tsintanddydt=ddta sint=a costNow, dydx=dydtdxdt=a costa cos2tsint=tantTherefore,d2ydx2=ddxdydx=ddxtant =ddttant×dtdx=sec2t×sinta cos2t =sinta cos4td2ydx2t=π3=sinπ3a cos4π3=32a116=83aHence, at t=π3, d2ydx2=83a.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 6
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon