If x=α,β satisfies both the equation cos2x+acosx+b=0 andsin2x+psinx+q=0 then relation between a,b,p and q is :
cos2x+acosx+b=0
⇒cosα+cosβ=−a⟶(1),cosα.cosβ=b
and sin2x+psinx+q=0
⇒sinα+sinβ=−p⟶(2),sinα.sinβ=q
squaring and adding (1) and (2),
2+2(cosα.cosβ+sinα.sinβ)=a2+p2
⇒2(b+q)=a2+p2−2