The correct option is D Does not exist
LHL=limx→[a]−e{x}−{x}−1{x}2=limh→0e{[a]−h}−{[a]−h}−1{[a]−h}2=limh→0e1−h−(1−h)−1(1−h)2=e−2RHL=limx→[a]+e{x}−{x}−1{x}2=limh→0e{[a]+h}−{[a]+h}−1{[a]+h}2=limh→0eh−h−1h2=P(say)Replacing h by −h in P, thenP=limh→0eh+h−1h2Adding Eq.(i) and (ii), then2P=limh→0eh+e−h−2h2=limh→0(eh−1)2eh.h2=(1)21=1P=12∴RHL=12 [from Eq.(i)]Hence, LHL≠RHL