Given: x=a(cost+logtant2),y=a sint
Finding dydt:
y=a sint
dydt=d(a sin t)dt
dydt=a cost
Finding dxdt:
x=a(cost+logtant2)
dxdt=d(a(cost+logtant2))dt
dxdt=⎛⎜
⎜
⎜
⎜⎝d(cost)dt+d(log(tant2))dt⎞⎟
⎟
⎟
⎟⎠
dxdt=a⎛⎜
⎜
⎜
⎜⎝−sint+1tant2.d(tant2)dt⎞⎟
⎟
⎟
⎟⎠
dxdt=a⎛⎜
⎜⎝−sint+1tant2.sec2(t2).12⎞⎟
⎟⎠
dxdt=a⎛⎜
⎜⎝−sint+cost2sint2.1cos2t2.12⎞⎟
⎟⎠
dxdt=a⎛⎜
⎜⎝−sint+12sint2cost2⎞⎟
⎟⎠
∣∣∣∵sint=2 sint2cost2∣∣∣
dxdt=a(−sint+1sint)
dxdt=a(−sin2t+1sint)
dxdt=a(1−sin2tsint)
dxdt=a(cos2tsint)
Finding dydx:
Now,dydt=dydtdxdt⋯(i)
Substituting the value of dydt and dxdt in (i),
we get,
dydx=a cos ta cos2tsin t
dydx=a cos t×sin ta cos2t
dydx=sin tcos t=tan t