wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x and y are connected parametrically by the equations x=a(cost+logtant2),y=a sint without eliminating the parameter, find dydx.

Open in App
Solution

Given: x=a(cost+logtant2),y=a sint
Finding dydt:
y=a sint
dydt=d(a sin t)dt
dydt=a cost

Finding dxdt:
x=a(cost+logtant2)
dxdt=d(a(cost+logtant2))dt
dxdt=⎜ ⎜ ⎜ ⎜d(cost)dt+d(log(tant2))dt⎟ ⎟ ⎟ ⎟
dxdt=a⎜ ⎜ ⎜ ⎜sint+1tant2.d(tant2)dt⎟ ⎟ ⎟ ⎟

dxdt=a⎜ ⎜sint+1tant2.sec2(t2).12⎟ ⎟
dxdt=a⎜ ⎜sint+cost2sint2.1cos2t2.12⎟ ⎟
dxdt=a⎜ ⎜sint+12sint2cost2⎟ ⎟
sint=2 sint2cost2
dxdt=a(sint+1sint)
dxdt=a(sin2t+1sint)
dxdt=a(1sin2tsint)
dxdt=a(cos2tsint)

Finding dydx:
Now,dydt=dydtdxdt(i)
Substituting the value of dydt and dxdt in (i),
we get,
dydx=a cos ta cos2tsin t
dydx=a cos t×sin ta cos2t
dydx=sin tcos t=tan t

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon