The given equations are x=a(cost+logtant2),y=asint
Then, dxdt=a[ddt(cost)+ddt(logtant2)]
=a⎡⎣−sint+1tant2.ddt(tant2)⎤⎦
=a[−sint+cott2.sec2t2.ddt(t2)]
=a⎡⎣−sint+cost2sint2×1cos2t2×12⎤⎦
=a⎡⎣−sint+12sint2cost2⎤⎦
=a(−sin2t+1sint)=acos2tsint
& dydt=addt(sint)=acost
∴dydx=(dydt)(dxdt)=acost(acos2tsint)=sintcost=tant